MATH 512, SPRING 17 HOMEWORK 2, DUE WED FEBRUARY 22

Problem 1. Recall that $Add(\kappa, \lambda)$ is the poset of all partial functions from $\lambda \times \kappa \to \{0, 1\}$, with domains of size less than κ . The ordering is reverse inclusion, i.e. $p \leq q$ is as functions $p \supset q$.

- (1) Show that for all $\alpha < \lambda, \eta < \kappa$, $D_{\alpha,\eta} := \{p \mid \langle \alpha, \eta \rangle \in \operatorname{dom}(p)\}$ is dense.
- (2) Show that for all distinct $\alpha, \beta < \lambda$, the set $D := \{p \mid (\exists \eta, \delta < \kappa)(\{\langle \alpha, \eta \rangle, \langle \beta, \delta \rangle\} \subset \operatorname{dom}(p), \text{ and } p(\langle \alpha, \eta \rangle) \neq p(\langle \beta, \delta \rangle)\}$ is dense.
- (3) Use the two items above to show that if G is Add(κ, λ)-generic, then in V[G], there are λ many distinct subsets of κ.

Problem 2. Suppose that $\pi : \mathbb{P} \to \mathbb{Q}$ is such that:

- (1) if $p' \leq p$ in \mathbb{P} , then $\pi(p') \leq \pi(p)$, and
- (2) for all $p \in \mathbb{P}$ and $q \leq \pi(p)$, there is $p' \leq p$, such that $\pi(p') \leq q$.

Show that if G is \mathbb{P} -generic, then the upwards closure of the image i.e. $\{q \in \mathbb{Q} \mid \exists p \in G(\pi(p) \leq q)\}$ is \mathbb{Q} -generic. Such a map π is called a projection.

Problem 3. Suppose that μ is a regular cardinal, \mathbb{P} has the μ -chain condition and $p \Vdash$ " \dot{B} is a bounded μ ". Show that for some $\alpha < \mu$, $p \Vdash \dot{B} \subset \alpha$.

Hint: Consider a maximal antichain below p, subset of $\{q \leq p \mid (\exists \alpha)q \Vdash \dot{B} \subset \alpha\}$

Recall that $\langle C_{\alpha} \mid \alpha \in \operatorname{Lim}(\kappa^+) \rangle$ is a \Box_{κ} sequence iff:

- (1) each C_{α} is a club subset of α ,
- (2) for each α , if $cf(\alpha) < \kappa$, then $o.t.(C_{\alpha}) < \kappa$,
- (3) for each α , if $\beta \in \text{Lim}(C_{\alpha})$, then $C_{\alpha} \cap \beta = C_{\beta}$.

Problem 4. Suppose that $\langle C_{\alpha} | \alpha \in Lim(\kappa^+) \rangle$ is a \Box_{κ} sequence. Show that there is no club $C \subset \kappa^+$ such that for all α , $C \cap \alpha = C_{\alpha}$. Hint: look at the order type of initial segments of such a C.

Problem 5. Let $j: V \to M$ be an elementary embedding with critical point κ . Suppose that \mathbb{P} is Prikry forcing at κ (for some measure) and let G be \mathbb{P} -generic. Recall that in V[G], κ is a singular cardinals with cofinality ω . Show that we cannot lift the embedding j to V[G]. In particular, show that any for any generic filter H for $j(\mathbb{P})$, we cannot have that $j^*G \subset H$.